Details of Microgrid Test Bed System

I. Sources Specifications

1. Wind Emulator Specifications: The PMSG and DFIG are coupled through the DC motor shaft.

A. DFIG based WECS (Nos: 1)

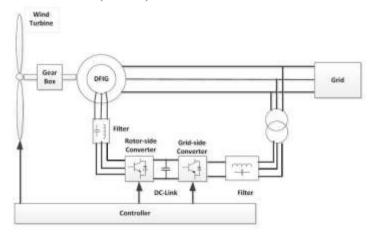


Fig. 1 DFIG based WECS

DFIG specifications: (Nos.: 1)

Power	2 kVA
Stator voltage	415 V
Current	5 A

B. PMSG based WECS (Nos: 1)

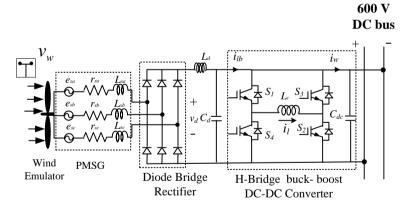


Fig. 2 PMSG based WECS

PMSG specifications: (Nos: 1)

Power, P_o	2.5 kW
Output Voltage, V_0	415 V
Speed in rpm	1000
Current	5 A
Torque	30 N-m
Connection	Star

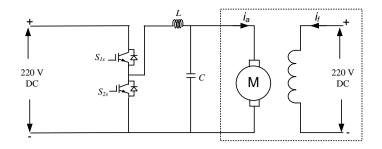


Fig. 3 DC Motor for Wind Emulator

C. DC Motor specifications: (Nos: 1)

Power, P_o	3 kW
Input voltage, V_{in}	220 V
Speed in rpm	1500
Current	13 A
Field voltage	220 V
Field current	0.5 A

II. Converters Specifications

1. Battery Converter (Nos:1)

Conv-Bat/Conv-Scap Specifications:

Power, P_o	1 kW
Output Voltage, V_o	96 V
Minimum Input Voltage, $V_{bat,min}$	44 V
Switching Frequency, F_{sw}	40 kHz
Output Voltage Ripple, ΔV_o	2% of V_o
Input Current Ripple, Δi_L	20% of I_L
Charging current	10 A
Discharging Current	30 A

Suggested Topology: Conventional Bi-directional Boost converter as shown in Fig. 4.

<u>Design Values:</u> Inductor $L_B = 300 \, \mu\text{H} / 30 \, \text{A}$; (with 5-7 tapings from 0.1 mH to 1 mH) Output Capacitor $C_B = 110 \, \mu\text{F} / 150 \, \text{V}$.

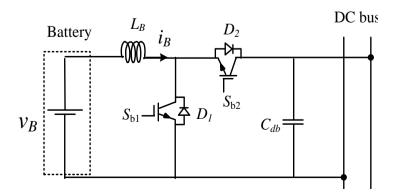


Fig. 4 Conventional bi-directional boost converter

2. Isolated DC-DC Converter (Nos:1)

Conv-Iso Specifications:

Power, P_o	5 kW
Output Voltage, V_o	500-700 V
Input Voltage, V_{in}	96 V
Switching Frequency, F_{sw}	40 kHz
Output Voltage Ripple, ΔV_o	2% of V_o
Input Current Ripple, Δi_L	20% of I _L

Suggested Topology: Isolated Boost Converter as shown in Fig. 5.

Other Requirements: Transformer tapings on secondary side (Left side of microgrid test-bed set-up diagram) for 200/400/600/800 V.

<u>Design Values</u>: Inductor $L_{iso} = 10 \, \mu\text{H} / 65 \, \text{A}$ (with 5-7 tapings from 1 μH to 50 μH)

Transformer turns ratio: $(N_S/N_P) = 8$ (with tapping)

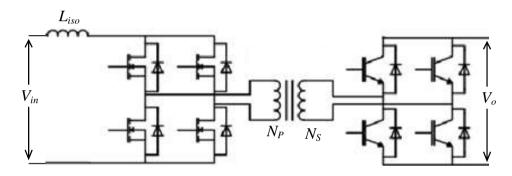


Fig. 5 Isolated boost converter

3. Conv-DFIG Specifications: (Nos.:1)

Inverter Rating	5 kVA
DC link voltage	500-700V
DC link capacitor (C _{dc})	3600 μF / 600 V
No. of Capacitors	2
Switching frequency	10 kHz - 20 kHz

Suggested Topology: 3 leg back-to-back converter as shown in Fig. 1

a. <u>Design Values</u>: Two LC Filters (with 5-7 tapings ranging from 0-10 mH) for DFIG WECS with L_1 = 5 mH/ 2.5 AC= 20 μ F as selected values.

4. Three Phase Diode Bridge Rectifier (Nos.:1)

Conv-DBR:

<u>Design Values</u>: Inductor L = 10 mH / 20 A

Output Capacitor $C = 100 \mu F / 1000 \text{ V}$.

<u>Suggested Topology:</u> Conventional Three Phase Diode Bridge Rectifier as shown in Fig. 2.

5. Buck Boost Converter for MPPT Tracking of PMSG based WECS (Nos.:1)

Specifications:

Output Voltage, V_o	500-700V
Input Voltage, V_{in}	50 V to 540 V
Switching Frequency, f_{sw}	20 kHz
Output Current	6.5 A

Suggested Topology: H-bridge Buck Boost converter as shown in Fig. 4

Design Values: Inductor L = 10 mH / 30 A

Output Capacitor $C = 100 \mu F / 600 \text{ V}$.

6. Voltage Source Inverters (VSI-Inv)

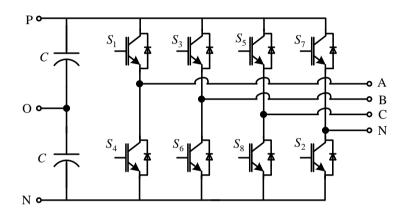


Fig. 6 Four leg inverter topology

VSI Specifications: (Nos.:1)

Inverter Rating	10 kVA
Topology	Four leg split capacitor
DC link voltage	500-700 V
DC link capacitor (C _{dc})	3600 μF / 600 V
No. of Capacitors	2
Switching frequency	20 kHz

- b. Suggested Topology: Four Leg Split Capacitor Inverter as shown in Fig. 6.
- c. <u>Design Values:</u> LCL Filter with following specifications:

 L_1 = 3 mH/ 25 A (with 5-7 tapings from 1 mH to 10 mH);

 L_2 = 1 mH/ 25 A (with 5-7 tapings from 0.5 mH to 5 mH) and

 $C = 10 \ \mu F / 250 \ V.$

III. Control Platform Specifications

- ❖ Number of ADCs = 64, (\geq 250 kSPS) simultaneous high-speed acquisition of the channel signals.
 - > ADC input signal range = ± 10 volts
 - Availability of check/testing points at the output of every ADC.
 - Provision to add/access additional ADCs externally.
- **❖** Number of DACs = 16
 - > DAC Output voltage range = bipolar with ± 10 volts
- * Encoder: 04
- **❖** Number of Digital I/Os = 96
 - Range= 0 to 5 volts (OR) Optically isolated ± 15 volts output
- **♦** PWM generation blocks with speeds around ≥100 kHz is desirable.
- The sampling of ramp signal in PWM block: 20 times the PWM frequency (≥2 MHz)
- Loop Speed
 - A system with 2 three-phase inverters, 7 DC-DC converters with fairly medium size algorithm to control them with sampling time of 10 μs (100 kHz).
 - ➤ All hardware setup is outside the digital platform such as transducers, inverters and DC-DC converters.
 - \triangleright The digital platform should acquire all necessary input signals, process them fast in the loop speed of 1-10 μ s.
 - > All the control signals (sensor outputs) should able to access with the necessary check points.

Communication Platform

- Communications between different DSP / dSPACE / OPAL-RT/ FPGA or any other controllers are required while interacting various Microgrids.
- **Other Requirements:** The control platform should have additional switches ready to use as shown in Microgrid test bed set-up figure.
- * Miscellaneous: Necessary software, cables, connectors and other accessories should be provided.

IV. Sensors and Protection Circuit Specifications

1. Sensors

- a) No. of Voltage sensors = 24
 - i. 1000 V-Rating = 2
 - ii. 500 V-Rating= 21

b) No. of Current Sensors = 42

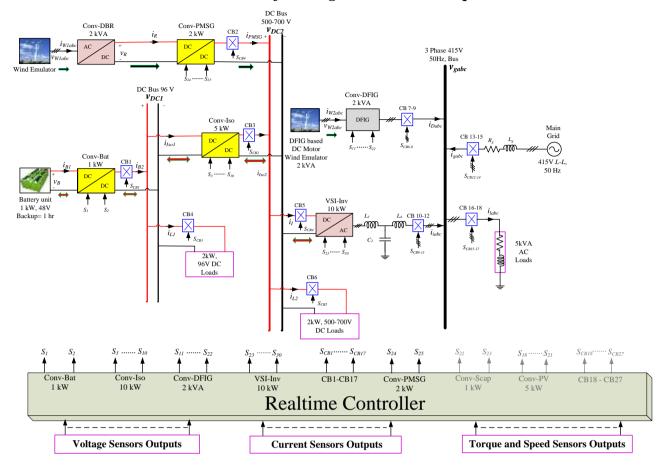
- i. 50 A-Rating= 35
- ii. 75 A- Rating= 5
- iii. 150 A- Rating = 1

2. Protection Circuit

a) DC Circuit Breakers and Solid-State Relays:

Breakers	Ratings
CB1, CB2, CB4	96 V; 65 A
CB3, CB5	500-700 V; 10-16 A
CB6	500-700 V; 5-6 A

b) AC Circuit Breakers (3-Phase 4- pole type) and Solid-State Relays:


Breakers	Ratings
CB7-9	440 V (RMS); 5 A (peak)
CB 10-12	440 V (RMS); 12 A (peak)
CB13-15, CB16-18	440 V (RMS); 25 A (peak)

Note: Relays input DC voltage must be in the range of 5 to 10 volts

Note: No need to quote following items in the above description.

- 1. Battery Unit
- 2. AC and DC Loads
- 3. Voltage and Current transducers / sensors

Schematic of Microgrid Test-bed Set-up

