ANNEXURE-1

TECHNICAL SPECIFICATIONS-CUM-COMPLIANCE TABLE FOR CARBONATION CHAMBER

NOTE: For each specification, please enter "Yes" or "No" in the third column of this table. If a cell in the third column is left blank, then it will be assumed that the quotation does not comply with the respective specification/requirement. Provide catalogues, data sheets and/or other documentation to support the compliance of your equipment to the given specifications.

S. No.	Specifications	Yes / No	Remarks
	General		
1	Size of storage area - minimum 200 litres		
2	Chamber interior - made of stainless steel, 18 SWG		
3	Chamber exterior - fabricated using 18 SWG MS powder		
	coated material		
4	Two detachable and height adjustable type loading tray		
	(wire shelving) each with at least 50 kg load bearing		
	capacity within the chamber		
5	Heavy duty castors for easy handling and transportation		
6	Non-flammable rock wool with at least 100 mm		
	thickness and at least 90 kg/m ³ density, on walls and		
	door		
7	Appropriate drain from within the chamber		
	Temperature Control		
8	Programmable temperature range: 5°C to 50°C with		
	measurement accuracy of at least ±0.1°C		
9	Control accuracy: within ±1°C after stabilization		
10	Inconel sheathed type heaters to prevent bursting		
	under long-term usage		
11	Single stage (one compressor) air-cooled refrigeration		
	system and a non-CFC based refrigeration gas for		
	temperature and humidity control		
	Relative Humidity (RH) Control		
12	Programmable RH range: 40 to 95% with RH accuracy of		
	±1.5%		
13	Air atomizers for humidification process along with		
	water vapour generator (with auto-refill facility)		
14	Storage tank for distilled water and a water level		
	indicator on the control panel		
15	Air compressor to produce dry air with at least @ 3-4		
	bar pressure and for de-humidification		
	Carbon-di-oxide (CO ₂) Control	r	
16	Programmable CO_2 range of 0 to 5% with accuracy of		
	the CO ₂ Sensor of at least 1% of measuring range or 5%		
	of the measured value		
17	Valve assembly (with both manual and automatic		
	control) for purging CO_2 into the chamber and remove		
	the excess CO ₂ from the chamber		

18	Air compressor to purge dry air into the chamber and remove the excess CO_2 from the chamber		
19	CO ₂ transmitter with a sensor preferably using NDIR		
	technology with automatic base line correction to		
	measure CO_2 . Response time of the CO_2 sensor should		
	be less than 2 minutes		
20	Transmitter should provide appropriate output with		
	respect to 0-5% CO ₂ concentration in the air and control		
	the opening and closing of purging valve to maintain the		
	Set concentration level		
21	Display and Control Panel		
21	a separate parter for controlling and displaying the		
	and CO concentration (in $^{\circ}$ C %PH and %) on the		
	control papel attached to the chamber. All these values		
	should be displayed at all time		
	Door Assembly and Viewing Window		
22	Door system with full front opening (180 degrees), with		
	heavy duty and long-lasting hinges with suitable locking		
	mechanism		
23	Door with a glazed viewing window		
24	Door equipped with an interlock protection system		
	(automatic switching off/on of the chamber)		
	Air-Circulation System		
25	Air circulation with fans (preferably with SS304 blades)		
	for the uniform control of environment inside the		
	chamber		
26	Motor to be kept outside the chamber		
	Controller System		1
27	High performance PID Profile Controller with advanced		
	control algorithm for stable straight-line control naving		
	temperature and humidity		
28	Provision of real-time clock		
20	5-digit display for temperature humidity and CO ₂		
23	process values and set points		
	Safety		
30	Over-heat safety system (with a maximum temperature		
	= 50°C) and an over-cool safety system (with a		
	minimum temperature = 5° C)		
31	Thermal overload relay for the fans and compressor		
32	Safety alarm for chamber malfunction		
33	Separate switch/button for switching off the main		
	power supply		
34	"Caution Notices", based on international standards, on		
	printed metallic plates, affixed onto the door		
35	Wiring for electrically grounding the entire chamber		
36	Noise Level of the chamber to be within 65 dBA,		
	measured at 1 m distance (as per TNPCB norms)		

37	All the electrical items should meet the Standard Ingress Protection 55 (IP 55) grade suitable for humidity chambers				
38	All the Switchgears and Metal Circuit Breakers used should be of proven, very high quality reputed brands (matching the quality standards of Telemechanic/Merlin Gerin etc.)				
Power Supply Requirements					
39	415 V ± 10%, 3 Phase, 50 Hz AC				
	Calibration Certificate				
40	Calibration certificate, which has traceability to NABL for the complete system should be provided at the time of supply. Original calibration certificate of the Sensors used, which has international traceability, should also be supplied along with the system				
	Vendor Qualification, Experience, Installation & Training				
41	The original equipment manufacturer (OEM) should have least 5 years of experience in the field of supplying environment - controlled chamber systems				
42	Similar equipment should have been supplied and commissioned satisfactorily. Provide a list of IITs/government agencies, where similar equipment was supplied with their email and phone contact details such that the details can be verified. Provide the relevant purchase orders also				
43	Free installation and commissioning of the Carbonation chamber at the location specified in the purchase order				
44	Free hands-on training on the installation, operation, testing, data acquisition, maintenance and emergency management of the equipment for minimum two users, for a period of at least one full working day at delivery location as specified in the purchase order				
45	Technical support to clarify queries on subsequent usage of the system Specify all what can be demonstrated in the Remarks cell				