Technical specifications for Inverted Fluorescence microscope and imaging system

Multi-port/multi-deck inverted fully motorized fluorescence microscope with imaging system with onsite upgradability to other optical sectioning modalities e.g. Total Internal Reflection Fluorescence Microscopy (TIRF) for single molecule studies and Spinning Disc Confocal Microscopy for high-speed confocal imaging

		Complied	Catalogue No./Pg	Remarks
S.No.	Description	(Yes/No)	No.	if any
Techn	ical Specifications			
	r should provide the latest model of the instrument and latest			
softwa	re version as applicable			
1	Microscope body:			
1.1	Fully motorized active multi-port inverted fluorescence microscope with bright field (BF), phase contrast (PC), and fluorescence imaging capabilities			
1.2	Scanning capability in X, Y, and Z axis, built-in active double deck/ stratum structure/infinity port system for additional custom upgradations in future (e.g. automated hardware based axial drift correction system)			
1.3	Motorized ergonomic stand with inbuilt Z-focus drive and motorized extra-fine/fine/coarse focus with minimum step resolution of 10-15 nm or better			
1.4	Equipped with side port adapters, side port caps, covers for blocking the stray light			
1.5	Minimum light distribution: 100% side port, 100% eye port			
1.6	Tool set necessary for manual adjustments and replacement of accessories and any other accessories/spares required for regular operation for the system			
1.7	Water-proof and static-proof microscope cover			
1.8	Water-proof body with drainage facility to avoid any leakage into microscope body during long-term live-cell imaging			
1.9	Standalone dedicated vibration-free external TFT/LCD touch screen or digital controller or equivalent hardware capable of controlling all motorized functions of microscope			
1.10	The frame should be able to support future upgrades such as TIRF system, Spinning disk confocal etc.			
2	Eye piece unit:			
2.1	Eye piece tube with base unit			
2.2	Focusable 10X eye piece with eye piece guard with minimum			
	field of view (FOV) 22 mm or better (2 nos.)			
3	Mechanical Stage:			
3.1	XY Mechanical stage with handle with sufficient travelling range for glass slides, multi-well plates and 35 mm and 60 mm petri dishes			
3.2	Stage inserts for 35 mm/60 mm dish, glass slide, well plate (6 well- to 96 well-plate), T25 tissue culture flask			
4	Transmitted Light Illumination System and Condensor:			

4.1	Bright LED transmitted Illumination with intensity control		
	through touch panel and imaging software for fast switching		
	between Fluorescence and BF/Phase contrast imaging during		
	time lapse imaging		
4.2	Tiltable pillar with condenser holder		
4.3	Long/Extra-long working distance motorized condensor with		
	minimum 5 position turret and built-in shutter		
4.4	Adjustable field aperture		
4.5	Condensor focusing mechanism		
4.6	Light-balancing daylight filter		
4.7	Interference green contrast filter		
4.8	Frost free filter		
4.9	Centering tools and accessories		
4.10	Phase contrast ring slits for 4X-40X objectives		
5	Nosepiece and Filter Turret:		
5.1	Motorized revolving nosepiece with filter turrets with		
	minimum 6 positions and built-in shutter; motorized functions		
	should be controllable through software and touch panel		
5.2	Field Stop		
5.3	Neutral Density (ND) filter		
5.4	Nosepiece cap (2 nos.)		
6	Fluorescence Filters:		
6.1	Pixel shift corrected narrow band pass fluorescence filter cube		
	sets for 1) DAPI, 2) FITC/GFP, 3) TRITC/RFP, and 4)		
	Texas Red/mCherry		
7	Objectives for Brightfield, Phase Contrast, DIC &		
	Fluorescence Applications:		
7.1	4X phase objective with N.A. 0.10 or above	 	
7.2	10X Plan semiapochromat/fluorite phase objective with N.A.		
	0.25 or above		
7.3			
	phase objective with N.A. 0.40 or above with coverglass		
7.4	correction 40X Long working distance Plan semiapochromat/fluorite		
/.4	phase objective with N.A. 0.60 or above with coverglass		
	correction		
7.5	60X Plan oil-immersion semiapochromat/fluorite objective		
	with N.A. 1.25 or above with coverglass correction		
7.6	Objective cleaning tissue paper set (2 nos.) and immersion oil		
	(50 ml, 3 nos.)		
8	Fluorescence Light Source:		
8.1	120W/130W metal halide/mercury lamp with controllable		
	intensity adjustment (built-in attenuator) (0-100%), shutter		
	and minimum working life of 2000 hours		

8.2	Spare metal halide/mercury lamp to be quoted		
8.3	Liquid light guide/fiber guide with adaptor		
8.4	Neutral Density (ND) filter		
0.4 9	•		
	Camera		
9.1	Peltier cooled sCMOS monochrome camera, Cooling terms and 10° C. A reliant terms and terms (25°C)		
0.2	temperature: 10°C, Ambient temperature (25°C)		
9.2	Quantum efficiency: 80% or higher		
9.3	Effective number of pixels: 2048 (H) x 2048 (V), Pixel size:		
0.4	6.5 micron x 6.5 micron Sensor size: 13.3mm x 13.3mm		
9.4			
9.5	Readout noise: 0.9 electrons median, Dark current: 0.6, Full		
0.6	well capacity 30,000 electrons		
9.6	Frame rate: 30 fps or above at full resolution		
9.7	Pixel binning: 2 x 2, 4 x 4		
9.8	Dynamic range: 33000:1		
9.9	Digital output: 16-bit support		
9.10	Lens mount: Large FOV 1X C-mount suitable for sCMOS		
0.11	Camera without any vignetting effect		
9.11	USB 3.0 data interface with necessary cable		
10	Image acquisition, and analysis system (Optional, to be		
10 10.1	quoted separately):		
	Windows 10 64-bit		
10.2	Intel i7 Processor 10 th generation or later version		
10.3	16GB or more RAM		
10.4	2 x 1TB SATA HDD, 256 GB SSD		
10.5	4GB NVIDIA Graphics Card or better		
10.6	30" or higher LED Monitor (branded)		
10.7	USB peripherals (Mouse, Keyboard etc.)		
10.8	UPS with minimum 30 minute backup power		
10.9	Pricing on this system should be quoted separately		
44	Image Acquisition and Analysis Software (Optional, to be		
11	quoted separately):		
11.1	Advanced research imaging software for fully automated		
	acquisition, device control of motorized components, and		
	experimental manager, including light sources, camera, and		
11.0	other hardware modules		
11.2	Capable of image acquisition and analysis including point,		
	line, area and various combinations of multi-channel and multi-dimensional acquisition of various combinations of XY,		
	XYZ, and XYZT and lambda, 5D imaging and display,		
	overlay of imaging, mark and find for multipoint and mosaic		
	imaging, real-time stitching of large samples with higher		
	magnification with stage movement (to be quoted with		
	optional XY stage), imaging with hardware & software based		
	optional XI sugo, mugnig with hardware & software based		

	autofocus. online ratio imaging/physiology with online			
	display of ratio image, real time intensity plot over time and			
	over depth.			
11.3	3D/volume rendering orthogonal slice view of 3D stacks, slice			
	view, intensity measurement over time and over depth,			
	kymograph, dynamic ROI, background subtraction,			
	Z-projection over time and Z-intensity measurement, time			
	lapse recording functions, video recording functions,			
	automated multi-channel fluorescence capturing & merging,			
	fluorescence unmixing, co-localization, wide-field real time			
	2D deconvolution feature, manual image stitching, interactive			
	measurements etc.			
11.4	The software should be capable of controlling all the			
	motorized components of hardware including optional XY			
	stage, optional hardware based autofocus module, emission			
	filter wheels/ λ DG4 for fast sequential imaging, LED light			
	sources for intensity and fast shutter control for multi-channel			
	imaging, third party sCMOS cameras for high-speed ratio			
	imaging, third party TTL/triggered device control, DAQ card			
	control for external light sources/lasers and perfusion systems,			
	on stage CO ₂ incubator			
11.5	Software autofocus module for drift-free imaging			
11.6	Saving of all system parameters with the image for multiple			
	independent users for repeatable/reproducible imaging			
11.7	The software must have drivers and modules for upgradable			
	hardware modules such as TIRF, FRAP, Spinning Disc			
	confocal (CSU X1 & CSU W1) and super resolution systems			
	for future upgradation			
11.8	The software should have capability to import and export			
	images in OME (Open microscopy environment) &			
	BioFormats compatible with metadata for offline analysis			
	with open-source platforms such as ImageJ/Fiji			
11.9	Modules to perform design and execute complicated			
	experiments through drag and drop functions (Graphical			
	experimental manager/Jobs/journals/experiment designer etc.)			
11.10	High dynamic range imaging, instant extended focal imaging,			
	simultaneous imaging of two channels with image splitters			
	and multiple cameras, real time/instant EDF, Brightness			
	contrast adjustment, morphological filters, Fluorescence			
	spectral unmixing (to remove the			
	autofluorescence/overlapping dyes), Macro creation editing			
	and batch conversion/processing of large data sets, object			
	classifier/ intensity based automatic segmentation			
		I	1	

Exc anal FRE	tidimensional intensity measurement and data export to el format for further statistical analysis. Colocalization ysis with scatter plot display and statistical analysis, ET and FRAP analysis, spatiotemporal measurement lules. Calcium/physiology/ratio analysis module,		
bacl	Acground subtraction/correction, bleaching correction, cell nt and confluency measurements etc.		
broc	v optional/add on module mentioned in the software chure should be quoted with respective part code for better ity and to avoid confusion fair evaluation.		
12 USI	3 TTL conversion kit (Optional, to be quoted		
	arately)		
	3 TTL Conversion Kit for fast triggering of external		
	lware like perfusion/microfluidic chambers to be		
-	chronised with image acquisition software for seamless		
	gration		
	4 channel 8.5mA digital I/O device with an inbuilt data disition software to control the entire DAQ card		
	Imaging software should also have a built-in driver to		
	pletely integrate the triggering function with external		
	ices such as light sources and perfusion		
	ems/microfluidic devices for seamless fast sequential		
	ti-channel imaging with the LED light source, perfusion		
	ap and CO_2 incubators.		
12.4 The	imaging software should be able to trigger the LED lines		
thro	ugh DAQ card in microseconds precision for different		
wav	elengths		
	I/O device should have at least 24 single-ended digital		
	s DIO ports: Each DIO line should be individually		
1 .	grammable as a static DI or DO line.		
	output voltage should at least be +5V		
	imaging software should be able to send out trigger to		
	D light source as well as third party hardware such as		
	usion system and microfluidic devices/pumps		
	the cabling and controls required to integrate all the parts		
· · · · ·	operate from the controlling computer to be quoted		
	operate from the controlling computer to be quoted tem Integration:		
0.007	operate from the controlling computer to be quoted tem Integration: the components including microscope, camera, image		
	operate from the controlling computer to be quoted tem Integration: the components including microscope, camera, image asistion hardware and software should be fully integrated.		
14 Wa	operate from the controlling computer to be quoted tem Integration: the components including microscope, camera, image disition hardware and software should be fully integrated. rranty and Maintenance:		
14 Wa 14.1 2 ye	operate from the controlling computer to be quoted tem Integration: the components including microscope, camera, image usisition hardware and software should be fully integrated. rranty and Maintenance: ears warranty to be included on all the above components		
14 Wa 14.1 2 ye 14.2 Spar	operate from the controlling computer to be quoted tem Integration: the components including microscope, camera, image disition hardware and software should be fully integrated. rranty and Maintenance:		

-			
14.3	Latest software upgrades should be provided free of cost for 5		
	years (Bidders need to provide undertaking for the same)		
15	Post-installation checks:		
15.1	The system including all its components should be shown to		
	be fully functional		
15.2	Sample (either provided by IIT Madras or by the Vendor)		
	should be imaged with the system and various attributes of the		
	system should be clearly demonstrated		
15.3	Vendor should conduct workshop/training session as part of		
	equipment installation for internal and external users.		
16	Optional items (Vendors may quote the following items as		
	optional if available)		
16.1	IR Laser/LED-based hardware-based automatic focus drift		
	control module		
16.2	Linear encoded XY motorized stage with frictionless, wear-		
	free motor drives controlled by software, Stroke range:		
	X-direction: minimum 114 mm or higher; Y-direction:		
	minimum 73 mm or higher, Speed range: 20-25 mm/s (to be		
	quoted along with multi-point and well navigator modules)		
16.3	3D deconvolution module in image analysis software (for		
	bright field, wide field, and confocal imaging modules)		
16.4	Compact on-stage incubator to maintain the temperature at		
	37°C and humidity of 90% or more. It should come with		
	suitable holders, for 35mm & 60mm petri dish, & 96 well		
	plate. It should have objective heater as standard feature to		
	avoid any heat sink while using oil immersion objectives. It		
	should have built in touch screen display to modulate all the		
	parameters. The incubator should be upgradable for		
	maintaining the CO_2 level in the future.		
C) Oth	ner requirements		
1	Future upgradability (Bidders need to provide undertaking for the below mentioned)		
1	System should be upgradable to long-term live cell imaging		
	applications with controllable hardware and software		
	modules, including laser-based drift compensation and		
	onstage CO ₂ incubator and perfusion/microfluidic device		
1.1	compatibility		
	Mechanical XY stage should be upgradable to motorized		
1.2	linear encoded XY stage		
	The system should be onsite upgradable to IR Laser/LED		
	automatic focus drift control module for long term in focus		
1.3	time lapse imaging		

	All future upgradable modules must be fully integrated with		
	the microscope system in terms of hardware and image		
1.4	acquisition software, including hardware-based drift		
1.4			
	The frame should support future upgrades such as TIRF		
1.5	system, Spinning disk confocal		
1.6	The system should have future upgradability for DIC imaging		
2	Note to vendor:		
2.1	IIT Madras reserves the right to reject bids based on adverse		
	feedbacks received from past users.		
2.2	Bidders should give point-by-point compliance with respect to		
	the tender specifications. Bidders should provide technical		
	literature and brochure of the offered model and mention the		
	same in the compliance table. Bids without technical literature		
	will be summarily rejected		
2.3	Non-compliance to any of the two points above shall be		
	treated as incomplete/partial bid & shall not be considered for		
	further process		
2.4	If technical committee wishes to examine the instrument		
	specification, the bidders may also be called for the		
	demonstration of instrument for the various parameters during		
	technical evaluation		
2.5	Bidders should provide the country-of-origin certificate by		
	chamber of commerce or manufacturer		
2.6	Bidders should provide all pre-installation requirements to		
	have the system installed in ideal room conditions		
2.7	90% payment will be made after delivery and remaining 10%		
	after installation and training		
			I

II	Bidder Eligibility Criteria-II	Compliance (Yes/No)	Reference Page No.	Remarks, If any
1	Vendor should have a good track record of selling similar systems with at least 5 installations across India especially in Centrally Funded Technical Institutes (CFTIs), Central and State Universities, and Centrally Funded Research Institutes etc. Proof of the same i.e., 5 PO copies or Installation certificates along with contact details has to be provided			
2	Vendor should have a local presence with good track record of after sales support in Chennai, with facility for technical support, troubleshooting & training on the same system (Name, Contact number, Email ID & Address proof has to be submitted)			

(Note: It is mandatory for the bidders to provide the compliance statement in tabular column format along with catalogue page number (comply/not comply) for the Above points with document proof as required. Failing which bidders will be technically disqualified)