Pre-Qualification Requirements for

SUPPLY, INSTALLATION, COMMISSIONING AND TRAINING OF THERMO-MECHANICAL FATIGUE (TMF) TESTING SYSTEM

It is proposed to procure an axial-thermal mechanical fatigue test system capable of conducting high temperature low-cycle, high-cycle fatigue experiments on engineering materials, with inphase, out-of-phase thermal and mechanical loading, complete with hardware, software and instrumentation to the following broad specifications.

Please include all components necessary for complete axial TMF test system such as high stiffness load frame; hydraulic actuators; hydraulic service manifold; hydraulic power unit; digital control electronics and software; computer based control and data acquisition system; transducers for load, strain, and displacement measurement; heating and cooling system with control electronics for thermal fatigue cycling.

All safety features for test system operation, operator safety as well as test specimen safety should be clearly indicated.

Optional: Inclusion of Torsional capabilities to the Axial Thermo-Mechanical Test System to allow Axial-Torsional Thermo-Mechanical Fatigue Testing. This might include actuator, associated servo-valves, controls, software and transducers. **This is based on budget availability**.

Sl.No.	Prequalification Requirement	Compliance/Non-compliance + Remarks/point-by-point technical justification.
1	 TMF test system based on computer controlled servohydraulics principles to conduct tests as per applicable ASTM / equivalent test standards a) +/- 100 kN dynamic capacity with at least 10% overrating for static capacity. b) Maximum temperature up to 1200 deg C c) Provision to conduct axial thermo-mechanical fatigue tests with in-phase (thermal and mechanical loading) and out-of-phase as per user defined test profile. d) Induction heating method (or) radiant bulb heating method of gage section of test specimen with the temperature rise rate of 10 deg C/s and temperature Cooling rate of 5-10 deg C/s e) Temperature stability of specimen and within three zones of heating: +/- 2 deg C. f) Quick mounting and release of temperature heating system with protection for operator against electrical shock and open circuit, heat injuries. 	
	g) Ability to conduct static, fatigue tests with test	

I	
	system operating frequency range: 0.001 Hz to
	50 Hz (for plain RT high cycle fatigue tests). Use
	of twin servo-valves (Lo-Flow and Medium
	Flow). Specify the frequency-amplitude
	response for test system obtained with
	specimen loaded condition.
h)	Ability to conduct user defined waveform
,	testing under displacement, load and strain
	control.
i)	Bump less mode transfer from displacement,
''	load and strain modes.
j)	Transducers and signal conditioners with low
11	_
	drift and low hysteresis as per ASTM E-74 (load
	cell) and ASTM E 83 (extensometer).
к)	User programmable creep, stress-relaxation
	tests on the same TMF test system.
I)	Alignment of test specimen loading axis using
	suitable alignment fixtures and conforming to
	suitable TMF test standards.
m)	Grips and fixtures along with cooling circuitry
	for conducting high temperature TMF tests.
	Temperature outside the heating zone (near
	load cell or actuator end) shall not exceed 50
	deg C.
n)	Contact extensometer for conducting strain
	controlled experiments up to 1200 deg C.
	Extensometer rate for 1200 deg C with
	compliance to ASTM E-83 standards in terms of
	linearity, hysteresis, drift and noise.
o)	Typical gage length of high temperature
,	extensometer: 25 mm with suitable scaling blocks
	to either increase or decrease gage length (12.5
	mm or 37.5 mm) with strain range (calculated for 25
	mm gage length) of +/- 10 % or greater
p)	Side load protected load cell for measuring axial
	tension/compression loading upto +/- 100 kN
	with adequate over rating for infinite life fatigue
	operation.
a)	Free-standing Load frame with twin columns,
-1/	telescopic lift cylinders, Hydraulic assisted
	clamping/de-clamping and movable cross-head
	to accommodate test specimens of various
	kinds.Load frame stiffness: > 450 kN/mm.
	-
r)	Spacing between two columns for specimens: >
,	500 mm.
S)	Working height between actuator top and load
	cell: > 1000 mm.
t)	Hydraulic power-pack with working pressure of
	3000 psi, > 36 lpm discharge with suitable oil-

	water heat exchange system and chiller unit.	
u)	Digital controller with multi-channel signal	
	conditioning and control unit with seamless transfer	
	from one control mode to another.	
v)	Additional signal conditioner channels for strain	
-	bridge, thermo-couple inputs and	
	LVDT/accelerometer to be provided apart from the	
	typical control modes of operation (displacement,	
	load, strain)	
w)	The controller should permit operation either in	
-	stand-alone mode with its own displays or be	
	operated through suitable switching to computer	
	interface. The controller should have provision to	
	control the rate of heating/cooling of specimens and	
	correct based on thermo-couple sensors attached to	
	the specimen. Overshooting of high temperature is	
	not allowed.	
x)	Controller should have high loop update rate on	
	controls (> 5 kHz) and high data acquisition rate (>5	
	kHz) across all channels.	
y)	The controller should be PID type with auto-	
	transducer sensing, electronic gain on transducer	
	channels, and capable of auto-tuning in test control	
	mode. A user friendly, Microsoft Windows [®] based	
	32 bit or 64 bit control software with provision for	
	user test design should be provided along with the	
	system. GUI for the test system should permit	
	monitoring of multiple windows of test parameters,	
	which can be configured by the user. The test	
	controller should be preferably 32 bit or 64 bit	
	system.	
z)	Provision to tap high level output signals from signal	
	conditioner module for data logging in external	
	systems such as NI [®] cards.	
aa)	The test controller should be designed for operation	
	in tropical conditions such as existing at Chennai	
	(Madras), India and comply with International	
	Standards of operation in tropical environments.	
bb)The test system software should have	
	supervisory/multi-level controls to ensure tamper-	
	proof operation of system by basic operators.	
	Software protection with password to alter test	
	system configuration, calibration is required.	
cc)	Should there be a power failure, the protection	
	system should ensure power to the system's	
	controller and connected computer to ensure test	
	stop in a controlled manner, and allow the specimen	
	to cool down and save test data. It is desirable that	
	the test system is transferred to load control and	
	maintain zero load on the specimen. Restart should	
	be smooth recognizing the previous condition of	
	testing.	

2	Performance curves of similar systems supplied to		
	other vendors should be included. Typically, these refer		
	to: a) Load cycle response at different frequencies,		
	b) Temperature rise-fall response,		
	c) Temperature uniformity graphs/data		
	d) Temperature stability data with time as well as		
	with location of the TMF test specimen (at		
	various sections along the gage length of test specimen),		
	 e) Stress vs. strain response during in-phase and out-of-phase TMF tests on axial specimens; 		
	 f) Load, strain signal stability response with active sensors connected to these channels along with 		
	LVDT response in actuator hydraulics ON		
_	condition for 3-6 hours.		
3	List of customers to whom such systems have been		
	supplied worldwide over the last 10 years along with their names, contact details.		
4	The supplier should be a reputed International		
	Company, ISO 9000 series compliant, who undertakes responsibility for total system supply and not a parts		
	integration vendor.		