Technical Specifications for Laser Flash Photolysis Transient Absorption Spectrometer

The Laser Flash Photolysis Transient Absorption Spectrometer consists of two components, which are labeled below as A and B. The vendor should have demonstrated the capability to integrate component A and B, which constitutes the 'Laser Flash Transient Absorption Spectrometer'. User Certificates for satisfactory installation, demonstrating the capabilities of the vendor for integrating the two components, namely A and B, should be given separately. The absence of this vital information in the bid will result in the disqualification of the vendor.

Part A: Flash Photolysis Spectrometer: The spectrometer should be capable of performing transient absorption measurements at nano seconds and longer. It should be possible to measure the kinetics of the excited state dynamics at single as well as multiple wavelengths. The components and technical specifications are given below. Compliance from the vendor is expected in the last column.

No.	Description	Technical Specifications of the Compliance
		components in Spectrometer
1	Light Source	Xenon arc lamp (150W) suitable for both
		pulsed and continuous wave (CW) mode.
		The sensitivity expected is +/- 0.001 AU in
		pulsed mode and +/- 0.0005 AU in CW
		mode.
2	Monochromator	Should be programmable, Czerny-Tunar
		type, f/3.4 with 1200 lines/mm holographic
		grating covering wavelength range of 250
		nm to 850 nm.
3	Detector	Photomultiplier tube with 9 stage dynode-
		chain housing: R928. The detection range
		should be from 190 nm to 920 nm with a
		rise time of 2 to 3 ns.

4	Sample	Should have programmable shutters, cell	
	Housing	holder with thermostat unit, optical setting	
		for cross beam excitation, filter holder,	
		option for inert gas purging, integrated	
		optical rails	
5	Data	ASCII data format, digital oversampling	
	Acquisition	(up to 10, 000,000 samples per kinetic	
		acquisition), linear and logarithmic time-	
		base options, up to 10 points per ns	
		sampling rate	
6	Interlock unit	Suitable interlocking system should be	
		provided to avoid the accidental trigger of	
		ignition pulse	
7	Spectrometer	Operations of the spectrometer should be	
	control unit and	automated and should be able to make	
	sequencer	sequential events with the help of the	
		control unit (ie independent of the work	
		station). It should be configured for both	
		10 Hz as well as single shot operations	
8	Control	Full control on the spectrometer,	
	Software	comprehensive data display mode, analysis	
		tool by non-linear least squares algorithm	
		(Marquardt-Levenberg). Software should	
		have with unlimited license.	
9	Global Analysis	The software should be able to do SVD	
	Software	and global analysis of multi-wavelength	
		kinetic data, with data simulation facility.	
		Should be able to fit the data for various	
		kinetic models. Software should have with	
		unlimited license.	

No.	Description	Technical Specification	Compliance
1	Pulsed energy	850 mJ at1064 nm 450 mJ at 532 nm	
		220 mJ at 355 nm	
		100 mJ at 266 nm	
2	Repetition rate	10 Hz as well as single shot	
3	Modes of	Long pulse and Q switch	
	operation		
4	Pulse width	8-10 ns	
5	Pulse shape	Gaussian	
6	Beam Diameter	< 10 mm	
7	Spatial Mode	Gaussian	
8	Beam	< 0.5 mrad	
	divergence		
9	Jitter	<0.5 ns	
10	Harmonics	Single housing for all the harmonics	
	Generator	and provisions for external pre-post	
		triggering	
11	Energy	< 5%	
	fluctuations		
	from pulse to		
	pulse		
12	External trigger	Q switch TTL output	
13	Cavity	Sealed	
14	Coupling Optics	OPO to be pumped by the YAG with	
		motorized wavelength tuning and	
		necessary coupling optics	

Part B: Laser System for integration with Flash Photolysis Spectrometer as in Part A.

15	Input energy	> 200 mJ at 355 nm	
16	Wavelength range of OPO	415-2500 nm	
17	Pulse energy signal	>40 mJ maximum	
18	Pulse energy signal+ idler	>50 mJ	
19	Line width	$<10 \text{ cm}^{-1}$	
20	Voltage	230 VAC50 Hz single phase	

The lamp replacement should be easy without opening the cavity or disturbing the YAG rod.

All necessary chillers required should be quoted for tap water free operations. The quote should also include sample cuvettes (10 numbers), required number of computers with latest version of Microsoft Windows operating system, monitors, and printers.

Optional accessories:

- 1. Beam Expanding Telescope
- 2. Diffuse Reflectance Accessory
- 3. NIR detection